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ABSTRACT
Real-time hybrid simulation (RTHS) is an experimental testing methodology that divides a structural system into an analytical
and an experimental substructure. The analytical substructure is modeled numerically, and the experimental substructure is
modeled physically in the laboratory. The two substructures are kinematically linked together at their interface degrees of freedom,
and the coupled equations of motion are solved in real-time to obtain the response of the complete system. A key challenge in
applying RTHS to large or complex structures is the limited availability of physical devices, which makes it difficult to represent
all required experimental components simultaneously. The present study addresses this challenge by introducing Online Cyber-
Physical Neural Network (OCP-NN) models–neural network-based models of physical devices that are integrated in real-time
with the experimental substructure during an RTHS. The OCP-NN framework leverages real-time data from a single physical
device (i.e., the experimental substructure) to replicate its behavior at other locations in the system, thereby significantly reducing
the need for multiple physical devices. The proposed method is demonstrated through RTHS of a two-story reinforced concrete
frame subjected to seismic excitation and equipped with Banded Rotary Friction Dampers (BRFDs) in each story. BRFDs are
challenging to model numerically due to their complex behavior which includes backlash, stick-slip phenomena, and inherent
device dynamics. Consequently, BRFDswere selected to demonstrate the proposed framework. In the RTHS, one BRFD ismodeled
physically by the experimental substructure, while the other is represented by the OCP-NN model. The results indicate that
the OCP-NN model can accurately capture the behavior of the device in real-time. This approach offers a practical solution for
improving RTHS of complex structural systems with limited experimental resources.

1 Introduction

Real-time hybrid simulation (RTHS), also known as cyber-
physical simulation, is an experimental testing methodology that
integrates numerical modeling and physical testing to evaluate
the dynamic response of structural systems subjected to realistic
loading scenarios such as earthquakes, wind and tsunami. In
an RTHS, the structural system is divided into an analytical
and an experimental substructure. The analytical substructure is

modeled numerically, such as through finite element modeling,
while the experimental substructure is physically present in
a laboratory. The two substructures are kinematically linked
at their interface degrees-of-freedom (DOF), and the resulting
equations of motion are solved in real-time, allowing an accurate
evaluation of the systems’ performance under dynamic loading.
RTHS offers a cost-effective alternative to traditional experimen-
tal approaches such as shake table testing. By combining physical
testing and numerical modeling, it achieves high accuracy in
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assessing the performance of a structural system and the response
modification devices, including dampers, base isolation systems,
and others, at a significantly reduced cost.

A significant challenge in RTHS occurs when the number of
experimental components installed in a structure exceeds the
number of physical devices available in the laboratory. To address
this issue, researchers have incorporated numerical models of
such devices leveraging Online Model Updating (OMU) tech-
niques to enhance the accuracy of the models. OMU dynamically
adjusts the parameters of the numerical model based on the
measured real-time response of the experimental substructure,
thereby improving the accuracy of the simulation. Hashemi
et al. [1] implemented OMU in a hybrid simulation of an elastic
frame, where the left column was represented experimentally
and the right columnwasmodeled numerically.Moment-rotation
measurements at the base of the physical column were used to
update the spring coefficients at the base of the numerically mod-
eled column. Shao et al. [2] extended this approach by employing
an Unscented Kalman Filter (UKF) for parameter estimation in
an RTHS of a small-scale three-story shear frame. The bottom
story was represented physically and the remaining stories were
modeled numerically. The UKF was employed for OMU of the
numerically modeled stories based on the real-time response of
the experimentally modeled story. Mei et al. [3] utilized a UKF
for OMU in a hybrid simulation of a reinforced concrete bridge
with tall piers. TheUKFwas used to identify concrete constitutive
parameters in real-time, improving the accuracy of the numerical
substructure and enhancing the prediction of damage evolution.
The results from the aforementioned studies indicated that OMU
enhances the accuracy of the numerical models in comparison
to pre-calibrated models without OMU. Al-Subaihawi et al. [4]
utilized a UKF for OMU of the nonlinear Maxwell model to
accurately represent nonlinear viscous dampers in an RTHS of a
two-story reinforced concrete frame subjected to strong ground
motions. The study demonstrated that the UKF can effectively
capture the nonlinear behavior of the viscous damper with
high accuracy.

Although the UKF and its variants are widely used for OMU
in RTHS, its performance is fundamentally constrained by the
accuracy of the underlying constitutive routine. Specifically, if
the constitutive routine when incorporated into a numerical
model cannot adequately capture the complex behavior of a
device, evenwhen parameters are updated in real-time, theUKF’s
estimations remain inaccurate. Moreover, the UKF may suffer
from numerical instability or reduced accuracy when applied to
systems exhibiting strong nonlinearities. It also struggles to track
system dynamics effectively when the system’s parameters evolve
rapidly in time.

Neural networks (NNs) have been recognized as universal func-
tion approximators [5, 6] making them suitable candidates for
surrogatemodeling in various applications. Consequently, several
researchers have used NNs as surrogate models for the dynamic
response analysis of nonlinear structural systems through data-
driven [7] or physics-informed [8–10] models. These studies used
NNs, trained on simulated data, to predict structural responses
under dynamic excitations, highlighting their ability to effectively
learn and represent the complex behavior of structural systems
from the training data.

Several researchers have explored the potential of NNs in RTHS.
For instance, Mucha [11] used artificial NNs to replace the
analytical substructure in an RTHS of a bicycle frame, where a
nonlinear shock absorber was used as the experimental substruc-
ture. Bas and Moustafa [12] used a Long Short-Term Memory
(LSTM) based model to replace the analytical substructure in
an RTHS of a one-story steel frame, where a linear brace was
the experimental substructure. Although these studies demon-
strated that NNs could serve as a viable alternative to finite
element modeling to represent the analytical substructure, their
application remains constrained because of several limitations.
First, these studies primarily replaced simple analytical sub-
structures, which could otherwise be effectively modeled using
conventional FEA, offering limited impact. Second, complete
substitution of analytical substructures with NNs does not allow
a detailed evaluation of structural performance, particularly
at the member level. Finally, extending these approaches to
largermulti degree-of-freedom (MDOF) systems,wheremember-
level performance evaluation is critical, would require obtaining
response from the NN atmultiple DOFs. This would require large
NNmodels, substantial training data, and complex architectures,
which may not achieve real-time computational performance.
Recent studies have employed NNs to partially replace complex
analytical substructures to enhance computational efficiency in
soil–foundation–structure interaction problems under wind [13]
and earthquake [14] loadings.

Although several studies have investigated the use of NNs as
alternatives to finite element models, significant gaps remain in
their application to augment experimental substructures in an
RTHS. To the best of authors’ knowledge, no prior work has
integrated NNs in an RTHS to complement the experimental
substructure under insufficient availability of physical devices.
This study introduces a novel approach that combines physical
devices and NNs to develop accurate online NN-based models
for RTHS. The proposed method is validated on a two-story
reinforced concrete special moment-resisting frame (RC-SMRF)
equipped with Banded Rotary Friction Dampers (BRFDs) as
the experimental substructure. In this setup, the first-story
damper is represented by a physical device, while the second-
story damper is modeled using an Online Cyber-Physical Neural
Network (OCP-NN) model. The OCP-NN model leverages real-
time measurements from the physical device during an RTHS to
replicate its behavior at the second-story. Two OCP-NNmodeling
strategies are proposed: (a) a data-driven model that directly
predicts the output force and (b) a physics-based model that
estimates the parameters of a numerical model of the device in
real-time. The physics-based OCP-NN model is further used to
investigate the impact of shortcomings in the constitutive routine
formulation, which results in the numerical model’s inability to
fully capture the device’s dynamic behavior. To assess the relative
performance of the proposed approach, both OCP-NN models
are benchmarked against a Constrained Unscented Kalman
Filter (CUKF), typically used for OMU in RTHS. Although the
validation is performed using a BRFD, the proposed framework
is generalizable and applicable to a broad class of experimental
substructures within the RTHS paradigm.

The paper is organized as follows. Section 2 introduces the
prototype building, the proposed RTHS framework, and the OCP-
NN models. Section 3 presents the results of a validation study
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FIGURE 1 Floor plan of the prototype building and the detailing of the beams and columns.

and compares the performance of OCP-NN models relative to
conventional techniques. Section 4 presents and assesses the
results of the RTHS experiments. Section 5 summarizes the
procedure and discusses its implementation to other RTHSs.
Finally, Section 6 summarizes the key findings and conclusions
of the study.

2 Proposed RTHS FrameworkWith OCP-NN
models

Section 2.1 outlines the prototype structure employed to demon-
strate the proposed framework, followed by a detailed description
of the RTHS configuration incorporating the OCP-NN models in
Section 2.2. The architecture and training methodology of OCP-
NN models are presented in Section 2.3. Section 2.4 describes
OMUusing aCUKF,which serves as a baseline for benchmarking
the performance of the OCP-NN models.

2.1 Prototype Structure

The prototype structure used in this study is a two-story RC-
SMRF designed by Kolay and Ricles [15]. The prototype structure
is assumed to be an office building located in Los Angeles,
California on a stiff soil (soil type D). The floor plan and
detailing of beams and columns are shown in Figure 1. The RC-
SMRF without the dampers was designed according to ASCE
7-10 [16], and the beams and columns were designed and detailed
according to ACI 318 [17]. The columns are 457 × 416 mm in
cross section and designed using 27.5 MPa compressive strength
concrete. Each column has a total of eight #9 bars of 414 MPa
yield strength as shown in Figure 1. The floor and roof beams are
305 × 559 mm and 305 × 457 mm in cross section, respectively,
and are designed using concrete of 27.5 MPa compressive
strength. The beams of the first floor are reinforced with two #8
bars in the top and bottom of their cross section and the roof
beams are reinforced with two #7 bars in the top and bottom of
their cross sections. Note that the objective of the study is not to

assess the performance of the structure but to assess the accuracy
of the OCP-NNmodels. To this end, the north-south RC-SMRF in
the middle of the floor plan is used as the analytical substructure
and is fitted with BRFDs [18] in each story.

The BRFD features a rotating drum with three steel bands, lined
with a ceramic friction material (GGA-Cured, Rigid), wrapped
around the drum. The pretension force in the bands is applied
through two Tolomatic RSA50 BN02 electric actuators with a
stroke of ±89 mm. When subjected to external excitation, the
rotation of the drum produces an increasing contact pressure
profile, which is minimum at the slack end and maximum at the
taut end of the bands. As the drum rotates, a frictional torque
is produced to counteract the applied force. This phenomenon,
known as the self-energizing mechanism, allows the damper to
achieve a high friction capacity with minimal energy input. The
BRFD has a stroke of ±45 mm and a variable force capacity that
depends on the applied pretension force.

The maximum force capacity of the damper can be regulated
by adjusting the pretension in the bands using the electric
actuators. For the study reported herein, the damperwas operated
in passive mode, where the electric actuator pretension forces
are defined before each test. The pretension force is achieved
using displacement control, where the displacement is held fixed
in each electric actuator after achieving the target pretension
force. In their fixed displaced positions, the electric actuator
forces undergo changes as the drum rotates. Under the drum
rotation, the maximum damper force achieved is the target
damper force capacity. The BRFD features a large amplification
(≈ 140) of the electric actuator pretension forces and produces
exceptional energy dissipation [19]. However, its complex force-
deformation behavior presents significant challenges for accurate
numerical modeling.

The BRFD is shown in Figure 2a, and its force-deformation
behavior for a harmonic excitation is shown in Figure 2b. The
device exhibits a characteristic reduction in stiffness during
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FIGURE 2 The experimental substructure test setup used in the study; (a) Banded Rotary Friction Damper (BRFD), (b) force-deformation, and
(c) force-velocity behavior of the damper under a sinusoidal excitation of amplitude 16.5 mm and frequency 0.5 Hz.

TABLE 1 Coefficients of LuGre dry friction model obtained from characterization test at a damper output force of 23 kN.

Coefficient 𝝈𝟎 𝝈𝟏 𝝈𝟐 𝑭𝒄,neg 𝑭𝒄,pos 𝑭𝒔,neg 𝑭𝒔,pos 𝒗𝒔

Value 6442.5 kN/m 29.61 kNs/m 0 kNs/m 19.75 kN 22.91 kN 21.93 kN 24.43 kN 0.025 m/s

load reversals, commonly referred to as backlash, as shown in
the figure. The force-deformation response of the damper also
exhibits chattering, which is more pronounced in the second
and third quadrants after the device reaches its peak force, a
phenomenon labeled as “Device Dynamics” in the figure. This
chattering is attributed to the dynamic interaction between
the drum and the bands. Although a detailed investigation of
this phenomenon is outside the scope of this study, model-
ing it is critical for RTHS as it can affect the total energy
dissipated by the damper [20] and consequently, the response
of the structure. These complex characteristics make BRFDs
an ideal choice for validating the accuracy of the OCP-NN
framework.

The LuGre dry friction model [21] is generally used to model the
hysteretic behavior of friction devices, including BFRDs, [18, 22],
due to its ability to capture the general hysteretic response of such
devices. The output force from the LuGre dry friction model is
given by:

𝐹 = 𝜎0𝑧 + 𝜎1𝑧̇ + 𝜎2𝑣 (1)

where 𝑣 is the velocity at the interface between the drum
and the bands, 𝜎0 represents the aggregate bristle stiffness, 𝜎1

represents the microdamping, 𝜎2 is the viscous friction, and 𝑧 is
an evolutionary variable given by:

𝑧̇ = 𝑣 − 𝜎0

|𝑣|
𝑔(𝑣)

𝑧 (2)

𝑔(𝑣) = 𝐹𝑐 + (𝐹𝑠 − 𝐹𝑐)𝑒
−(

𝑣

𝑣𝑠
)
2

(3)

In Equation (3) 𝐹𝑐, 𝐹𝑠, and 𝑣𝑠 are the Coulomb friction, the static
friction, and the Stribeck velocity, respectively. The coefficients
of the LuGre dry friction model for the given damper are
estimated using Particle Swarm Optimization and are provided
in Table 1. The damper force-deformation behavior predicted
by the LuGre dry friction model using these coefficients is
shown in Figure 2b,c. The LuGre dry friction model is able

to capture the general hysteretic response; however, it fails to
capture the aforementioned backlash effect and the inherent
device dynamics. Coble et al. [22] proposed a combined NN-
LuGre model which enhanced the prediction accuracy of the
conventional LuGre model by using a multi-layer perceptron to
approximate 𝜎0. Although the enhancedmodel was able tomodel
backlash under harmonic oscillations, the model did not perform
adequately under dynamic loading and was unable to capture the
aforementioned device dynamics.

The experimental substructure comprises the BRFD, an MTS-
hydraulic actuator, a foundation beam, and a load cell positioned
between the BRFD and the actuator to measure the restoring
force, as shown in Figure 2a. The damper frame, connections, and
electric actuators are considered to be a part of the experimental
substructure. To minimize delay and amplitude error in the
actuator-imposed displacement and ensure precise actuator con-
trol, the adaptive time series (ATS) compensation algorithm [23]
is used.

The analytical substructure consists of the structure without the
dampers. Since the experimental substructure is a one-half scale
damper with a maximum force capacity of 25 kN, the analytical
substructure is scaled down by a value of two. The scaling of
the analytical substructure followed the similarity law where
acceleration and stress are both preserved in the full-scale and
reduced-scale models, as often done in experimental structural
testing. Consequently, by dimensional analysis, for a scale factor
Λ associated with the dimensions of the model, the time axis is
scaled by

√
Λ and the mass by Λ2.

In the reduced-scale model, four dampers are installed in parallel
at each story, providing a maximum combined damper capacity
of 100 kN per story. Since the dampers act in parallel, the
total restoring force at each story is obtained by summing the
individual contributions from each damper. Accordingly, the
measured force froma single damper is scaled by a factor of four to
represent the total restoring force at the story level. For instance,
in the first story, the restoring force is obtained by multiplying
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TABLE 2 Natural periods and participation factors for the first two
modes.

Mode Period (s) Participation factor (%)

First 0.39 92
Second 0.12 8

the measured force from the experimental substructure by four.
Similarly, at the second-story, the output of the NN model is
scaled by the same factor to simulate the contribution of the four
parallel dampers.

The beams and columns of the analytical substructure are
modeled using explicit force-based fiber elements (FBE) [15], and
the reinforced concrete sections are modeled using the modified
Kent-Park concrete model with degrading linear unloading and
reloading paths and zero tensile strength. The gain in concrete
strength due to confinement is captured by using different
concrete stress-strain relationships for the core and the cover of
the cross sections. The reinforcing bars are modeled using the
modifiedGiuffre-Menegotto-Pintomodelwith kinematic harden-
ing. To obtain objective element and section responses in the FBE
elements, the plastic hinge integration method proposed by Scott
and Feneves [24] is used. The sections at each integration point
are divided into 5, 5, and 10 fibers for the top cover, bottom cover,
and core, respectively, over the depth of the cross section. The
beam-column joints are assumed to be rigid and aremodeledwith
a 5.7% rigid offset at the end of the element adjacent to the column
face. Geometric nonlinearities are accounted through a lean-on
P − Δ column. The mass of the structure is calculated based
on the tributary seismic mass area and is lumped at the node
located at the center of the floor and roof beams in the horizontal
direction. It was observed that the dampers do not undergo large
deformation due to the analytical substructure being a stiff RC
frame. Therefore, themass of the structure is increased by a factor
of two to introduce a greater extent of damage in the structure
and, consequently, increasing the deformation demand in the
dampers. The benefits of the increased mass are twofold: (a)
higher deformations are observed in the test specimen, and (b)
the natural period of the structure increases, resulting in lower
vibration frequencies and reduced structural velocities. The latter
is particularly advantageous given the velocity limitation of the
hydraulic actuator, which has a maximum capacity of 330 mm/s.
The natural periods and the participation factors for the first two
modes are provided in Table 2. Since a half-scale model of the
analytical substructure is used, the time axis is scaled down by
a factor of

√
0.5 during the RTHS to maintain similarity.

2.2 RTHS Configuration with the OCP-NNModel

The RTHS configuration with the integrated OCP-NN model is
shown in Figure 3, and a flowchart of the RTHS simulation
is shown in Figure 4. The system is divided into an analytical
substructure that is modeled numerically using HyCoM-3D [25],
an experimental substructure that physically models the first-
story damper, and the OCP-NN model that numerically models
the second-story damper using real-time data from the experi-
mental substructure. The simulation coordinator conducts the

simulation and maintains synchronization across all substruc-
tures. Synchronization is maintained on the servo-hydraulic
actuator controller at a frequency of 1024 Hz. The explicit
dissipative model-based MKR-𝛼 integration algorithm developed
by Kolay and Ricles [26] is used to solve the coupled equations of
motion. This integration algorithm solves the following weighted
equations of motion:

𝑴 ̂̈𝑿𝑖+1 + 𝑪 𝑿̇𝑖+1−𝛼𝑓
+ 𝑹𝑰𝑖+1−𝛼𝑓

= 𝑭ext
𝑖+1−𝛼𝑓

(4)

where (⋅)𝑖+1−𝛼𝑓
= (1 − 𝛼𝑓)(⋅)𝑖+1 + 𝛼𝑓(⋅)𝑖 , 𝑴 and 𝑪 are the mass

and damping matrices, respectively, and 𝑿̇𝑖+1−𝛼𝑓
, 𝑹𝑰𝑖+1−𝛼𝑓

and
𝑭ext

𝑖+1−𝛼𝑓
are the weighted velocity, restoring force, and external

applied load vectors, respectively. ̂̈𝑿 in Equation (4) is defined as:

̂̈𝑿𝑖+1 = (𝕀 − 𝜶𝟑)𝑿̈𝑖+1 + 𝜶𝟑𝑿̈𝑖 (5)

In Equation (5) 𝕀 is the identity matrix, while 𝑿̈𝑖+1 and 𝑿̈𝑖 are the
acceleration vectors at the (𝑖 + 1) and 𝑖𝑡ℎ timestep, respectively.
The kinematic relationships for calculating the displacement
vector 𝑿𝑖+1 and the velocity vector 𝑿̇𝑖+1 for the subsequent
timestep are:

𝑿𝑖+1 = 𝑿𝑖 + Δ𝑡𝑿̇𝑖 + Δ𝑡2𝜶𝟐𝑿̈𝑖 ; 𝑿̇𝑖+1 = 𝑿̇𝑖 + Δ𝑡𝜶𝟏𝑿̈𝑖 (6a,b)

and the acceleration vector 𝑿̈𝑖+1 for the next timestep is calculated
as:

𝑿̈𝑖+1 = (𝑴 − 𝑴𝜶𝟑)
−1(𝑭ext

𝑖+1−𝛼𝑓
− 𝑪𝑿̇𝑖+1−𝛼𝑓

− 𝑹𝑰𝑖+1−𝛼𝑓
− 𝑴𝜶𝟑𝑿̈𝑖)

(7)

where 𝜶𝟏, 𝜶𝟐, and 𝜶𝟑 are the model-dependent integration param-
eter matrices of size 𝑁𝑑𝑜𝑓 × 𝑁𝑑𝑜𝑓 , where 𝑁𝑑𝑜𝑓 is the total number
of DOFs of the system, and are calculated as:

𝜶𝟏 = 𝜶−𝟏𝑴 ; 𝜶𝟐 = (0.5 + 𝛾)𝜶𝟏 (8a,b)

𝜶𝟑 = 𝜶−𝟏
(
𝛼𝑚𝑴 + 𝛼𝑓𝛾Δ𝑡𝑪init + 𝛼𝑓𝛽Δ𝑡2𝑲init

)
(9)

where, 𝜶 = 𝑴 + 𝛾Δ𝑡𝑪init + 𝛽Δ𝑡2𝑲init, 𝛾 = 0.5 − 𝛼𝑚 + 𝛼𝑓 ,
𝛽 = 0.25( 1 − 𝛼𝑚 + 𝛼𝑓)

2, and

𝛼𝑚 =
2𝜌3

∞ + 𝜌2
∞ − 1

𝜌3
∞ + 𝜌2

∞ + 𝜌∞ + 1
𝛼𝑓 =

𝜌∞

𝜌∞ + 1
(10a,b)

𝑲init and 𝑪init are the initial stiffness and damping matrices of
the complete system, and 𝜌∞ ∈ [1, 0]. 𝜌∞ controls the amount
of numerical energy dissipation, where 𝜌∞ = 1 and 0 indicate
zero and the maximum numerical energy dissipation, respec-
tively [27]. The restoring force vector for the (i+1)th timestep
(𝑹𝑰𝑖+1) is calculated as:

𝑹𝑰𝑖+1 = 𝑹𝑰a
𝑖+1

+ 𝑹𝑰e
𝑖+1

+ 𝑹𝑰NN
𝑖+1

(11)

where 𝑹𝑰a
𝑖+1

, 𝑹𝑰e
𝑖+1

, 𝑹𝑰NN
𝑖+1

are the restoring force vectors of the
analytical, the experimental substructure, and the OCP-NN
model, respectively.

The RTHS simulation begins by selecting the timestep Δ𝑡, the
high-frequency spectral radius 𝜌∞, and the number of steps 𝑁

in the simulation. The model-dependent integration parameter
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FIGURE 3 RTHS configuration showing the one-half scale analytical substructure, the corresponding experimental substructure and the OCP-NN
model.

FIGURE 4 Proposed RTHS framework with the OCP-NN model.

matrices are then defined, and the initial acceleration vector
𝑿̈0 = 𝑴−1(𝑭ext

0 − 𝑪init𝑿̇0 − 𝑲init𝑿0) is calculated. At the beginning
of each timestep, the displacement vector 𝑿𝑖+1 and the velocity
vector 𝑿̇𝑖+1 at the end of the timestep are calculated using
Equation (6a,b). The displacement 𝑋e

𝑖+1
of the experimental

substructure is imposed using a hydraulic actuator. Since the

servo-hydraulic actuator controller timestep (𝛿𝑡 = 1∕1024 s) is
smaller than the simulation timestep (Δ𝑡), 𝑋e

𝑖+1
is divided into

𝑚 = Δ𝑡∕𝛿𝑡 substeps and imposed in 𝑚 substeps. The OCP-NN
model receives the data from the experimental substructure every
1/1024 s, therefore, the displacement of the OCP-NN model is
also divided into 𝑚 substeps for input to the OCP-NN model.

6 of 18 Earthquake Engineering & Structural Dynamics, 2025
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Simultaneously, the displacement vector 𝑿a
𝑖+1

and velocity vector
𝑿̇a

𝑖+1
are input to the analytical substructure to obtain its restoring

force vector. Once the restoring forces are obtained from the
three substructures, the global restoring force vector is assembled
as shown in Equation (11), and the acceleration vector at the
end of the timestep is calculated using Equation (7). Therefore,
the integration of the current timestep is completed, and the
algorithm proceeds to the next timestep. This iterative process is
repeated until the simulation is complete.

2.3 OCP-NNModel Architecture

As discussed earlier, the OCP-NN model uses the measured
response of the physical device and the damper deformation
at the second-story to provide an accurate prediction of the
damper force in the second-story. The measured response from
the physical device includes themeasured device force and defor-
mation. The response may include additional measurements
from the device, depending on its configuration. For example, in
this study, to enhance prediction accuracy, the OCP-NN model
also incorporated the forces from the two electric actuators as
additional inputs.

An LSTM model [28] is used to create the OCP-NN model due to
its ability to utilize past input data for calculations at the current
timestep. Furthermore, LSTM networks incorporate a memory
cell designed to retain information over extended time intervals.
An LSTM cell consists of three gates and a candidate cell state
given by the following equations:

𝒇𝑖 = 𝜎
(
𝑾𝒇𝐗𝑖 + 𝑼𝒇𝐡𝑖−1 + 𝒃𝒇

)
(Forget gate) (12)

𝒊𝑖 = 𝜎(𝑾𝒊𝐗𝑖 + 𝑼𝒊𝐡𝑖−1 + 𝒃𝒊) (Input gate) (13)

𝑪̃𝑖 = tanh (𝑾𝑪𝐗𝑖 + 𝑼𝑪𝐡𝑖−1 + 𝒃𝑪) (Candidate cell state) (14)

𝒐𝑖 = 𝜎(𝑾𝒐𝐗𝑖 + 𝑼𝒐𝐡𝑖−1 + 𝒃𝒐) (Output gate) (15)

where, 𝜎 is the sigmoid function, tanh is the hyperbolic tangent
function, 𝑾𝒌, 𝑼𝒌 are the input and recurrent weights for gate 𝑘,
respectively, and 𝒃𝒌 is the bias for gate 𝑘. The cell and hidden
states for the current timestep are then calculated as:

𝑪𝑖 = 𝒇𝑖 ⊙ 𝑪𝑖−1 + 𝒊𝑖 ⊙ 𝑪̃𝒊 (Cell state update) (16)

𝒉𝑖 = 𝒐𝑖 ⊙ tanh (𝑪𝑖) (Hidden state update) (17)

where⊙ is theHadamard product. As shown inEquation (16), the
cell state of the current timestep depends on the cell state of the
previous timestep through an element-wise operation (Hadamard
product) without passing through any activation function. This
property enables the preservation of gradients during backprop-
agation over time, effectively addressing the vanishing gradient
problem. Moreover, the recurrent nature of the forward pass
ensures that the outputs at the current timestep are influenced
by the inputs and outputs from the previous timesteps. These
characteristics allow LSTM networks to leverage past input data
when making predictions at the current timestep, making them
an ideal choice for modeling nonlinear hysteretic materials.

As discussed earlier, two distinct OCP-NN models are intro-
duced: (i) a data-driven OCP-NN model that directly predicts
the output force, and (ii) a physics-based OCP-NN model
that updates the coefficients of a numerical model of the
device in real-time, following an approach similar to that used
in OMU.

2.3.1 Data-Driven OCP-NNModel

The architecture of the LSTM model used for the data-driven
OCP-NN model is shown in Figure 5. At each timestep (e.g.,
𝑖 + 1), themeasured response from the experimental substructure
(physical device), which includes: (a) the measured damper force
𝐹meas

𝑖+1
, (b) the measured damper deformation 𝑋meas

𝑖+1
, and (c) the

tension force 𝑻meas
𝑖+1

in the two electric actuators, is used as input
to an LSTM layer consisting of 16 neurons. The deformation 𝑋NN

𝑖+1

of the second-story damper is used as input to a second LSTM
layer, also consisting of 16 neurons, to produce a hidden state
representation. The outputs from these layers are concatenated
and input to two consecutive LSTM layers of 48 neurons each,
followed by a dense layer to reduce the output to the desired
dimension to predict the force 𝑅𝐼NN

𝑖+1
of the OCP-NN model.

The number of layers and the number of neurons per layer
are the network hyperparameters and were optimized through
a grid search. The selected configuration was found to perform
satisfactorily and execute in real-time, as shown later.

To train the model, a suite of ground motion records is selected
from the PEER NGA-West2 database [29]. The selection of the
ground motion records is guided by a seismic hazard disag-
gregation for the location of the building, i.e., Los Angeles,
California, that targets the uniform hazard curve associated with
the design basis earthquake (DBE) having a return period of 475
years. The ground motions are scaled to the DBE hazard level
based on the uniform hazard spectrum (UHS) for the location
of the building. The ground motion scaling procedure used in
this study is described in detail by Malik and Kolay [30] and is
summarized here. The scale factors for the 𝑖th ground motion
pair are determined by minimizing a weighted sum of squares
between the target spectrum and the geometric mean of the
spectrum of the ground motion pair. Ground motions with scale
factors less than three are used for subsequent analysis. A total
of 20 ground motion records are selected to form the dataset,
comprising 14 for the training dataset, four for the validation
dataset, and two for the RTHS. The response spectrum and
statistics for the selected ground motion records are shown in
Figure 6.

The training dataset for the OCP-NN model is generated by
imposing predefined damper deformation time histories from
the first and second stories onto the physical device to record
the measured responses. These predefined deformation time
histories are derived from numerical simulations of the structure,
where the dampers in the first and second stories are modeled
using a LuGre dry friction model of the damper. This approach
is deemed appropriate, as the training data is ultimately sourced
from the damper itself. As previously noted, the output force from
the BRFD varies with the pretension force applied by the electric
actuators. To account for this variability, the training dataset is
augmented by generating output forces from the BRFD at three
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FIGURE 5 Architecture of the LSTMmodel used for the data-driven OCP-NN model showing the real-time link with the physical device.

FIGURE 6 Statistics of the groundmotion dataset; (a) response spectrum, (b) shearwave velocity, (c) rupture distance, and (d)momentmagnitude.

different damper force capacities: (a) 13 kN, (b) 18 kN, and (c)
23 kN. Thus a total of 𝑁train = 𝑁rec × 3 = 42 time histories are
used for training the model. It is important to note that during an
RTHS, the OCP-NN model receives noisy data from the physical
device due to the inherent noise in the load cell and displacement
sensor measurements. Therefore, the OCP-NN model is trained
using unfiltered data, ensuring it can accurately learn and operate
under realistic conditions. A MinMax Scaler is used to normalize
the training data, and the scaled data is given as:

𝑿𝐬𝐜𝐚𝐥𝐞𝐝 = 𝑿 −min(𝑿)

max(𝑿) −min(𝑿)
𝒀𝐬𝐜𝐚𝐥𝐞𝐝 = 𝒀 −min(𝒀)

max(𝒀) −min(𝒀)

(18a,b)

where,𝑿, and𝒀 represent the inputs and outputs of the OCP-NN
model. As shown by Malik et al. [14], regularization is important
when training a NN model for RTHS, therefore a 10% dropout
[31] is used after each LSTM layer to regularize the NN model
and avoid overfitting. A batch size of ten is used for training the
OCP-NNmodel, and theAdamoptimizer [32] is used for updating
the gradients. The learning rate is set to 10−3 and is decreased
every 10 epochs by a factor of 0.99. The mean square error (MSE)
between the predicted force andmeasured force is used as the loss
function. The training hyperparameters, i.e., the dropout rate, the
batch size, and the learning rate decay were optimized through a
grid search.

In an RTHS, the damper restoring force is sampled at the servo
hydraulic actuator controller rate, typically 1024 Hz. Conse-
quently, the timestep for the OCP-NNmodel is also set to 1/1024 s.
Ground motions typically span durations of 30–50 s, resulting in
training time histories for the OCP-NN model comprising 3.07 ×

104 to 5.12 × 104 timesteps. Although LSTM models are well-
suited for processing long time series, training on such extensive
sequences can hinder convergence. To address this, truncated
backpropagation through time (TBPTT) procedure as described
in Algorithm 1 is utilized [33]. For each batch, the time histories
are divided into smaller sub-sequences of 6000 timesteps. The
hidden and cell states of the LSTM network are initialized to
zero. A forward pass is performed, the loss is calculated, and
gradients are updated. The hidden and cell states at the end of
each sub-sequence are stored and used as the initial states for the
next sub-sequence. This process is repeated until the entire batch
is processed.

2.3.2 Physics-Based OCP-NNModel

The physics-based OCP-NN model predicts, in real-time, the
coefficients of the LuGre dry friction model, which are then used
to compute the damper force. The physics-based OCP-NN model
is inherently constrained by the constitutive routine (i.e., the
LuGre equation for the BRFD), embedding physical knowledge
into the model.

For the BRFD, an explicit form of the LuGre force equation is
derived using forward difference. An explicit formulation is
utilized as it does not require any iteration and can be readily
implemented within the physics-based OCP-NN model routine.
Rewriting 𝑧̇ from Equation (2) using forward difference:

𝑧𝑖+1 − 𝑧𝑖

𝑑𝑡
= 𝑣𝑖+1 − 𝜎0

|𝑣𝑖+1|
𝑔(𝑣𝑖+1)

𝑧𝑖+1 (19)

8 of 18 Earthquake Engineering & Structural Dynamics, 2025
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ALGORITHM 1 Truncated Backpropagation Through Time
(TBPTT) used for training the OCP-NN model.

1: Input: Training data 𝐗train, 𝐘train

2: Output: Optimal network parameters 𝜃

3: Initialize network parameters 𝜃

4: Set truncation length 𝑁trunc

5: for each epoch do
6: Shuffle the training data and divide into batches

𝐗batch, 𝐘batch

7: for each batch 𝐗batch, 𝐘batch do
8: Divide the batch into sub-sequences each with a

length 𝑁trunc

9: Initialize 𝒉 = 0 and 𝒄 = 0

10: for each sub-sequence (k) in the batch do
11: Perform forward pass: Calculate 𝐲̂, 𝒉trunc and 𝒄trunc

12: Compute loss: 𝐿 = (𝐲, 𝐲̂)

13: Compute gradients: 𝜕𝐿

𝜕𝜃

14: Update network parameters: 𝜃 ← 𝜃 − 𝜂∇𝜃𝐿

15: Set 𝒉 = 𝒉trunc and 𝒄 = 𝒄trunc

16: end for
17: end for
18: end for

where 𝑑𝑡 is the size of the timestep. This equation can be
rearranged to provide 𝑧𝑡+1 as:

𝑧𝑖+1 =
𝑔(𝑣𝑖+1)(𝑣𝑖+1𝑑𝑡 + 𝑧𝑖)

𝑔(𝑣𝑖+1) + 𝜎0|𝑣𝑖+1|𝑑𝑡
(20)

Therefore, the force 𝐹𝑖+1 at time 𝑡𝑖+1 can be calculated as:

𝐹𝑖+1 = 𝜎0𝑧𝑖+1 + 𝜎1

(
𝑣𝑖+1 − 𝜎0

|𝑣𝑖+1|
𝑔(𝑣𝑖+1)

𝑧𝑖+1

)
+ 𝜎2𝑣𝑖+1 (21)

Equations (20) and (21) calculate the evolutionary variable 𝑧𝑖+1

and damper force 𝐹𝑖+1 from the evolutionary variable at previous
timestep 𝑧𝑖 in a non-iterative manner, and are therefore explicit
in nature. To facilitate the stability analysis of the explicit LuGre
model, Equation (20) can be reformulated as:

𝑧𝑖+1 = 𝑧𝑖

𝑔(𝑣𝑖+1)

𝑔(𝑣𝑖+1) + 𝜎0|𝑣𝑖+1|𝑑𝑡
+ 𝑣𝑖+1

𝑔(𝑣𝑖+1)𝑑𝑡

𝑔(𝑣𝑖+1) + 𝜎0|𝑣𝑖+1|𝑑𝑡
(22)

In this formulation, for a given input velocity 𝑣𝑖+1 and a
timestep 𝑑𝑡, 𝑔(𝑣𝑖+1) > 0, 𝜎0 ≥ 0, and 𝜎0 ≫ 𝑔(𝑣𝑖+1). Consequently,
the coefficient of 𝑧𝑖 in Equation (22) satisfies the following bound:

𝑔(𝑣𝑖+1)

𝑔(𝑣𝑖+1) + 𝜎0|𝑣𝑖+1|𝑑𝑡
< 1 (23)

This constraint prevents unbounded growth of 𝑧 and conse-
quently making the explicit LuGre model stable.

For the BRFD, the parameter𝜎0 has themost significant influence
on the backlash effect [22]. The parameters 𝐹𝑐 and 𝐹𝑠 affect

the peak damper capacity, which is proportional to the applied
pretension force in the electric actuators [18, 34]. Therefore, these
parameters can readily be determined from the applied electric
actuator pretension force as shown in Figure 7.

Additionally, since viscous friction is negligible for the BRFD, the
parameter 𝜎2 is assumed to be zero. Therefore, in the present
study, the physics-based OCP-NN model identifies only 𝜎0 and
𝜎1 in real time.

To this end, a custom physics layer was developed in TensorFlow
using the Keras SubclassingAPI [35]. This custom layer facilitates
seamless integration of any constitutive model into the physics-
based OCP-NN model. The architecture of the physics-based
OCP-NN model, including the custom physics layer, is shown
in Figure 8. The physics-based OCP-NN model consists of a
LSTM-based model, which has the same architecture as that
of the data-driven OCP-NN model described previously. The
LSTM network in the physics-based OCP-NN model predicts
the coefficients 𝜎0 and 𝜎1, which are then passed through
the physics layer. The physics layer operates analogously to a
recurrent neural network layer, maintaining a hidden state. For
the LuGre dry friction model, the hidden state corresponds to the
evolutionary variable 𝑧. The forward pass through the physics
layer is governed by the equations of the constitutive model,
specifically the LuGre dry friction model for the behavior of the
BRFD, and is outlined in Figure 8. At the beginning of the input
sequence, the hidden state 𝑧 is initialized to zero and evolves
over time according to the governing equations of the constitutive
model. This architecture ensures that the evolutionary state
variable 𝑧 evolves in compliance with the underlying physics
without affecting the gradient backpropagation. The custom
physics layer does not contain any trainable parameters, as it
serves to enforce the physical constraints of the model. While
the forward pass provided is specific to the LuGre dry friction
model, the custom physics layer can integrate any constitutive
model.

The loss function is based on the MSE between the true and
predicted damper force. The model is trained with a batch size
of five. The Adam optimizer is used to update the gradients. The
initial learning rate is set to 10−3 and is decreased every 10 epochs
by a factor of 0.99.

2.4 Constrained Unscented Kalman Filter Based
Online Model Updating

A CUKF–commonly used for OMU in RTHS– is employed as
a baseline for benchmarking the performance of the OCP-NN
models. To identify the parameters of the LuGre dry friction
model using the CUKF, the output force 𝐹 from the damper is
considered as a nonlinear transformation of the state variables
𝒙 = [𝜎0, 𝜎1]

T. 𝒙 is treated as a set of stochastic variables with
a mean 𝒙̄ and a covariance 𝑷𝒙, where the mean values are
determined from characterization tests. To calculate the statistics
of 𝐹, a matrix 𝝌 of 2𝐿 + 1 sigma points 𝝌𝒊 and their corresponding
weights 𝑊𝑖 are formed as [36]:

𝝌0 = 𝒙̄ (24)
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FIGURE 7 Variation of friction parameters 𝐹𝑐 and 𝐹𝑠 with applied pretension force, based on damper characterization tests performed at different
pretension forces in the two electric actuators (EA1 and EA2).

FIGURE 8 Architecture of the physics-based OCP-NN showing a block diagram of the physics layer.

𝝌𝑖 =
⎧⎪⎨⎪⎩

𝒙̄ +
(√

(𝐿 + 𝜆)𝑷𝒙

)
𝑖

𝑖 = 1, … , 𝐿

𝒙̄ −
(√

(𝐿 + 𝜆)𝑷𝒙

)
𝑖−𝐿

𝑖 = 𝐿 + 1, … , 2𝐿
(25)

𝑊
(𝑚)

0 = 1

𝐿 + 𝜆
(26)

𝑊
(𝑐)

0 = 𝜆

𝐿 + 𝜆
+ (1 − 𝛼2 + 𝛽) (27)

𝑊
(𝑚)

𝑖
= 𝑊

(𝑐)

𝑖
= 1

2(𝐿 + 𝜆)
, 𝑖 = 1, … , 2𝐿 (28)

where, 𝐿 = 2 is the dimension of the state variables, 𝛼 determines
the spread of the sigma points around 𝒙̄ and is usually set to a
small positive value (10−3) [36], 𝜆 = 𝛼2(𝐿 + 𝜅), 𝜅 is a secondary
scaling parameter which is usually set to zero [36], 𝛽 is used to
incorporate prior knowledge of the distribution of𝒙where a value
of 2 is used in accordance with Wan and van der Merwe [36], and
(
√

(𝐿 + 𝜆)𝑷𝒙)𝑖 is the 𝑖th column of the matrix square root. The
covariance matrix in the CUKF is scaled by a factor 𝛾 ∈ (0, 1) to
enforce the constraints on the state variables [37]. Therefore, the
sigma point matrix from Equation (25) is written as:

𝝌𝑖 =
⎧⎪⎨⎪⎩

𝒙̄ + 𝛾
(√

(𝐿 + 𝜆)𝑷𝒙

)
𝑖

𝑖 = 1, … , 𝐿,

𝒙̄ − 𝛾
(√

(𝐿 + 𝜆)𝑷𝒙

)
𝑖−𝐿

𝑖 = 𝐿 + 1, … , 2𝐿,
(29)

The steps for estimating the parameters of the LuGre dry friction
model of the BRFD in the first story at each timestep 𝑘 during a
RTHS are as follows:

1. Define the Matrix of Sigma Points: The sigma points
𝝌𝑘−1|𝑘−1 are defined based on the mean state variables as:

𝝌𝑘−1|𝑘−1 =

[
𝒙̄

(
𝒙̄ + 𝛾

(√
(𝐿 + 𝜆)𝑷𝑘−1|𝑘−1

)
𝑖=1,…,𝐿

)

×

(
𝒙̄ − 𝛾

(√
(𝐿 + 𝜆)𝑷𝑘−1|𝑘−1

)
𝑖=𝐿+1,…,2𝐿

)]
(30)

where, the initial covariance matrix 𝑷0|0 is taken as
(𝜎𝑁 diag(𝒙̄))

2 as recommended by Al-Subaihawi et al. [37],
where 𝜎𝑁 is the process noise. The value of 𝛾 is initialized
at 1.0 and the sigma points are calculated. If any sigma
point falls outside its bounds, the value of 𝛾 is incrementally
decreased by a factor of 0.1 until all sigma points are
within their bounds [37]. In this study, 𝜎𝑁 was set equal to
3 × 10−4 based on a comprehensive sensitivity analysis. The
selection was guided by minimizing the root mean square
error (RMSE) between the measured and predicted force
responses.

2. Predict the State Vector: The predicted state vector 𝒙̄𝑘|𝑘−1

and its covariance 𝑷𝒙𝒙
𝑘|𝑘−1

are computed as:

𝝌𝑘|𝑘−1 = 𝝌𝑘−1|𝑘−1 (31)

𝒙̄𝑘|𝑘−1 =
2𝐿∑
𝑗=0

𝑊
(𝑚)

𝑗
(𝝌𝑘|𝑘−1)𝑗 (32)

𝑷𝒙𝒙
𝑘|𝑘−1

=
2𝐿∑
𝑗=0

𝑊
(𝑐)

𝑗

[
(𝝌𝑘|𝑘−1)𝑗 − 𝒙̄𝑘|𝑘−1

][
(𝝌𝑘|𝑘−1)𝑗 − 𝒙̄𝑘|𝑘−1

]𝑇
+ 𝑸

(33)
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where 𝑸 is the process noise covariance which controls
the degree of change in the state variables throughout the
estimation process. For this study, 𝑸 is taken to be equal to
(𝜎𝑁 diag(𝒙̄))

2 [37].

3. Calculate the Predicted Damper Force: The predicted
damper force 𝑦̄𝑘 and its variance 𝑃

𝑦𝑦

𝑘|𝑘−1
are computed as:

(𝝂𝑘|𝑘−1)𝑗 = 𝑓
(
(𝝌𝑘|𝑘−1)𝑗, 𝜎2, 𝐹𝑐, 𝐹𝑠, 𝑣𝑠, 𝑣𝑘, 𝑑𝑡

)
(34)

𝑦̄𝑘 =
2𝐿∑
𝑗=0

𝑊
(𝑚)

𝑗
(𝝂𝑘|𝑘−1)𝑗 (35)

𝑃
𝑦𝑦

𝑘|𝑘−1
=

2𝐿∑
𝑗=0

𝑊
(𝑐)

𝑗

[
(𝝂𝑘|𝑘−1)𝑗 − 𝑦̄𝑘

]2
+ 𝑅 (36)

where 𝑓(⋅) represents the nonlinear LuGre equation (see
Equation (21)), while 𝑅 denotes the measurement noise
covariance, quantifying the uncertainty associated with the
measurement noise. A small value of 𝑅 causes the CUKF
to rely heavily on the measured force, increasing the risk of
overfitting to noise in the data. Conversely, a large value of
𝑅 leads the CUKF to favor the predicted force, potentially
underfitting the data. In this study, the measurement noise
covariance 𝑅 is determined based on the standard deviation
of the noise in the load cell measurements and is set equal to
1.0 kN2.

4. Calculate the Kalman Gain Vector: The Kalman gain
vector 𝑲𝑘 is calculated as:

𝑲𝑘 =

(
2𝐿∑
𝑗=0

𝑊
(𝑐)

𝑗

[
(𝝌𝑘|𝑘−1)𝑗 − 𝒙̄𝑘|𝑘−1

][
(𝝂𝑘|𝑘−1)𝑗 − 𝑦̄𝑘

])
(𝑃

𝑦𝑦

𝑘|𝑘−1
)−1

(37)

5. Update the State Variables and Covariance Matrix:
Finally, the state variables 𝒙𝑘|𝑘 and covariancematrix𝑷𝑘|𝑘 are
updated as:

𝒙𝑘|𝑘 = 𝒙̄𝑘|𝑘−1 + 𝑲𝑘(𝑦𝑘 − 𝑦̄𝑘) (38)

𝑷𝑘|𝑘 = 𝑷𝒙𝒙
𝑘|𝑘−1

− 𝑲𝑘𝑃
𝑦𝑦

𝑘|𝑘−1
𝑲𝑇

𝑘
(39)

In Equation (38), 𝑦𝑘 is the measured damper force of the
experimental substructure, i.e., 𝑅𝐼𝑒

𝑖+1
at timestep 𝑖 + 1 = 𝑘. Once

the state variables at the current timestep are estimated, they are
used to compute the damper force in the second-story damper.

The covariance matrix 𝑷𝑘−1|𝑘−1 must remain positive semi-
definite throughout the RTHS; otherwise, it may result in com-
plex values for 𝝌𝑘−1|𝑘−1. To ensure this condition, the procedure
recommended by Al-Subaihawi et al. [37] is employed. In this
approach, any negative eigenvalues are shifted to match the
eigenvalues of the nearest positive definite matrix, thereby pre-
venting𝑷𝑘−1|𝑘−1 frombecoming ill-conditioned during a timestep.
Due to round-off errors during matrix reconstruction, some zero
eigenvalues may appear as small negative values. To address this,
any negative eigenvalues are shifted by a small value, 𝜖 = 10−11,
towards the positive side of the real axis [37]. Complete details of
this procedure can be found in Al-Subaihawi et al. [37].

Figure 9 presents the results from the CUKF and the physics-
based OCP-NN model, respectively, applied for the OMU of
the LuGre dry friction model under a sinusoidal excitation

with an amplitude of 16.5 mm and a frequency of 0.5 Hz.
The CUKF captures the trend in force during load reversal
(backlash) to some extent, whereas the physics-based OCP-NN
model more accurately represents this behavior. The Backlash
region consists of a de-energizing phase [22], where 𝜎0 decreases
between 0.5–0.7 s, followed by a re-energizing phase between 0.7–
0.8 s, where 𝜎0 increases. However, both models fail to capture
the chattering observed in the force-deformation response–an
inherent physical phenomenon not represented in the LuGre
model formulation. Based on Figure 9, the physics-based OCP-
NNmodel offers twomain advantages over the CUKF: (i) it yields
more accurate parameter estimates, and (ii) it eliminates the need
for manual parameter tuning, as these relationships are learned
automatically during backpropagation while training the model.

3 Performance Assessment of the OCP-NN
Models

This section evaluates the framework using a validation dataset
and discusses the advantages and limitations of the two OCP-NN
models. To this end, the prerecorded damper force-deformation
data and the electric actuator forces from the first-story damper,
and deformation of the second-story damper are provided as
inputs to the OCP-NN model. The predicted force response
at the second-story is then compared to the corresponding
measured force to assess the accuracy of the OCP-NN models.
The validation dataset consists of four earthquake groundmotion
records: (a) Tabas, Iran, recorded at Tabas; (b) Loma Prieta,
recorded at the Gilroy Array; (c) Loma Prieta, recorded at the
Hollister Differential Array; and (d) Kobe, Japan, recorded at
Kobe University.

3.1 Results on the Validation Dataset

Figure 10 compares the measured force-deformation response
of the physical damper with predictions from the models dis-
cussed previously under the Kobe earthquake. Among these, the
data-driven OCP-NN model demonstrates the best performance,
achieving a normalized root mean square error (NRMSE) of
1.46%, and effectively capturing the dynamic behavior of the
physical device. The physics-based OCP-NN model also provides
satisfactory predictions, albeit with slightly higher errors. Con-
versely, the CUKF performs least accurately, notably failing to
reproduce key nonlinear phenomena such as the backlash effect.
This limitation is clearly evident from the time evolution of 𝜎0

and 𝜎1, depicted in Figure 11. Specifically, the 𝜎0 estimated by the
physics-based OCP-NN model aligns well with observed trends
in Figure 9c, showing a decrease during the de-energizing phase
and an increase during re-energizing. However, the CUKF fails to
capture these rapid variations under seismic excitation, limiting
its ability to accurately represent the observed backlash effect.

It is important to emphasize that both the physics-based OCP-
NN model and the CUKF employ OMU within the constitutive
routine of the numerical model. Consequently, if the underly-
ing constitutive relationship is insufficient to describe the full
complexity of the physical system, even an accurate parameter
estimation may not yield an adequate representation of sys-
tem behavior. This limitation is evident in the present study.
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FIGURE 9 OMU of the LuGre dry friction model using CUKF and the physics-based OCP-NN model for a sinusoidal excitation of amplitude
16.5 mm and frequency 0.5 Hz: (a) damper force-deformation, (b) damper force time history, and (c) time evolution of 𝜎0.

FIGURE 10 Force-deformation response of the physical damper compared to (a) data-driven OCP-NN model, (b) physics-based OCP-NN model,
and (c) CUKF during the Kobe earthquake from the validation dataset.

FIGURE 11 Time evolution of the LuGre parameters (a) 𝜎0 and (b) 𝜎1 estimated by the physics-based OCP-NN model and the CUKF from time
𝑡 = 4.0 s to 𝑡 = 8.0 s during the Kobe earthquake from the validation dataset.

Although the physics-basedOCP-NNmodel successfully captures
variations of 𝜎0 and 𝜎1, essential to modeling the Backlash
effect, it cannot fully replicate all observed dynamic phenomena
in the BRFD, such as the chattering that emerges once the
device reaches its frictional force capacity. These dynamics are
influenced by additional components of the experimental setup–
including the damper frame, clevises, electric actuators, and
connection elements–which are not explicitly represented in the
LuGre dry friction model.

Despite its slightly lower predictive accuracy compared to the
data-driven OCP-NN model for the studied device, the physics-
based OCP-NN model provides significant advantages, notably
enhanced physical interpretability and deeper insights into

system behavior. Thus, choosing between physics-based and
data-driven OCP-NN model depends on both the fidelity of the
available constitutive routine and the objective of the analysis.
If a reliable numerical model is available and the objective is to
obtain deeper insights into device dynamics during an RTHS,
the physics-based OCP-NN model is preferable. Conversely,
the data-driven OCP-NN model, unconstrained by assumptions
inherent to a specific numerical formulation, can deliver superior
predictive accuracy in cases where the constitutive routine of the
numerical model fails to capture essential system behaviors.

To quantify the performance of the aforementioned models, the
following error indices are used: (a) NRMSE, (b) Mean Absolute
Error (MAE), (c) Coefficient of Determination (𝑅2), and (d) Time
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TABLE 3 Mean ± standard deviation values of the error metrics on the validation dataset for the studied models.

Model NRMSE (%) MAE (kN) R2 TRAC

Data-driven OCP-NN 1.87 ± 0.28 0.51 ± 0.14 0.97 ± 0.01 0.99 ± 0.00

Physics-based OCP-NN 2.61 ± 0.62 0.76 ± 0.19 0.95 ± 0.04 0.97 ± 0.02

CUKF 4.53 ± 0.57 1.35 ± 0.28 0.84 ± 0.07 0.92 ± 0.03

TABLE 4 Error metrics for the data-driven and physics-based OCP-
NNmodels on the validation dataset under varying delays in the real-time
data from the physical device.

Delay

Data-driven OCP-NN
model

Physics-based OCP-NN
model

NRMSE (%) MAE (kN) NRMSE (%) MAE (kN)

0 ms 1.87 ± 0.28 0.51 ± 0.14 2.61 ± 0.62 0.76 ± 0.19

5 ms 1.88 ± 0.33 0.51 ± 0.14 2.72 ± 0.60 0.77 ± 0.19

10 ms 1.93 ± 0.32 0.52 ± 0.14 2.94 ± 0.58 0.82 ± 0.19

15 ms 2.00 ± 0.33 0.54 ± 0.14 3.19 ± 0.56 0.87 ± 0.20

20 ms 2.12 ± 0.36 0.56 ± 0.14 3.43 ± 0.53 0.92 ± 0.20

Response Assurance Criteria (TRAC). These metrics are defined
as follows:

NRMSE = 100 ×

√
1

𝑁

∑𝑁

𝑖=1
(𝑦𝑖 − 𝑦̂𝑖)2

max(𝑦) − min(𝑦)
MAE = 1

𝑁

𝑁∑
𝑖=1

|𝑦𝑖 − 𝑦̂𝑖|
R2 = 1 −

∑𝑁

𝑖=1
(𝑦𝑖 − 𝑦̂𝑖)

2∑𝑁

𝑖=1
(𝑦𝑖 − 𝑦̄)2

TRAC =

(∑𝑁

𝑖=1
𝑦𝑖𝑦̂𝑖

)2

(∑𝑁

𝑖=1
𝑦2

𝑖

)(∑𝑁

𝑖=1
𝑦̂2

𝑖

)
where, 𝑦𝑖 is the measured value at 𝑖th timestep, 𝑦̂𝑖 is the predicted
value at 𝑖th timestep, 𝑦̄ is the mean of measured value and 𝑁

is the total number of timesteps. Table 3 presents the mean
and standard deviation of these error metrics calculated on the
validation dataset. Among the evaluated models, the data-driven
OCP-NN model demonstrates the highest predictive accuracy,
exhibiting the lowest mean NRMSE and MAE values as well as
minimal variation across these metrics. Furthermore, the R2 and
TRAC values of 0.97 and 0.99, respectively, highlight the excellent
match between predicted and measured force in terms of both
magnitude and phase.

3.2 Effect of Measurement Delay and Phase
Difference on the Prediction Accuracy of the
OCP-NNModels

Investigating the influence of measurement delay and phase
shift between the physical device and the OCP-NN models on
prediction accuracy is crucial for a reliable RTHS. To this end,
artificial delays ranging from 0 ms to 20 ms at increments of
5 ms are introduced into the measured response of the physical
device at the first story and their effect on the performance
of the OCP-NN models is evaluated. Table 4 summarizes the
corresponding error statistics computed for the validation dataset.

As expected, increasing the measurement delay leads to a
decline in model accuracy; however, this reduction remains
marginal within delays typically acceptable for RTHS (i.e.,
less than 5 ms).

It is important to highlight that delays inherent to the experi-
mental setup or phase differences between the input deformation
of the physical device and the OCP-NN model–potentially aris-
ing from damper placement or higher mode contributions–are
implicitly captured in the training dataset of theOCP-NNmodels.
This advantage stems from the fact that the training datasets are
generated using deformation histories derived from numerical
simulations of the structure intended for the RTHS, which are
then experimentally imposed on the physical device. Conse-
quently, the trained OCP-NN models inherently accommodate
these realistic operational variations.

This approach confers a notable advantage over traditional
methodologies, such as the CUKF, where phase shift can sig-
nificantly impair performance [37]. The CUKF estimates the
parameters of the numerical model based solely on the current
force and deformation measurements from the physical device,
without explicitly accounting for differences arising due to
device placement or structural dynamics. In contrast, the OCP-
NN models’ predictive capabilities remain robust against these
discrepancies due to their training procedure, which inherently
includes the aforementioned variations.

3.3 ComparisonWith an Offline Neural Network
Model

To highlight the advantages of the real-time data integration
from the physical device, an offline NN model–trained and
deployed without any real-time input from the physical system–
is compared against the OCP-NN model. In essence, the offline
NN model predicts the second-story damper force exclusively
from the corresponding damper deformation, without utilizing
additional real-time measurements from the physical device
which includes the first story damper force, deformation and the
forces in the two electric actuators. The offline NN architecture
consists of a single input, one output, and three LSTM layers,
each comprising 48 neurons. The training employs a batch size
of ten, a dropout rate of 10% per layer, and the Adam optimizer
for gradient updates. Figure 12 compares themeasured force with
the predictions obtained from the data-driven OCP-NN and the
offline NN models during the Kobe earthquake from the valida-
tion dataset. The offline NN model exhibits significantly inferior
performance compared to the data-driven OCP-NNmodel due to
the fact that unlike the data-driven OCP-NN model, the offline
NNmodel omits the additional real-timemeasurements from the
physical device described above.
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FIGURE 12 Force-deformation response of the physical damper
compared to (a) data-driven OCP-NN model and (b) offline NN model
with no connection to the physical device during the Kobe earthquake
from the validation dataset.

4 RTHS Results and Discussion

This section assesses the performance of the OCP-NN models in
RTHS under two ground motion records: (a) Northern Calif-03
event recorded at the Ferndale City Hall, and (b) Loma Prieta
event recorded at the Emeryville Pacific Park. For benchmarking,
results obtained using the CUKF–a widely used OMU technique
in RTHS [14, 37]–are reported alongside those from both data-
driven and physics-based OCP-NN models.

Figures 13(a) and (b) present the time histories of the roof dis-
placement and second-story damper deformation, respectively,
obtained from the RTHS using the Northern Calif-03 ground
motion recorded at Ferndale City Hall. The choice of model for
the second-story damper has a marked influence on the global
response. RTHS using the data-driven and physics-based OCP-
NN models yield peak roof displacements of 45.6 and 44.0 mm,
respectively, for the prototype structure. However, the CUKF
model underestimates the peak roof displacement at 40 mm–an
underestimation of 12.2% compared to the data-driven OCP-NN
model. A similar trend is observed in the damper deformation
response: using the CUKF in the structure underestimates the
demand, with peak deformation of approximately 15 mm, com-
pared to 18.5 and 18 mm for the data-driven and physics-based
OCP-NNmodels, respectively – an underestimation of about 19%.
Figure 14 compares the hysteretic force–deformation behavior
obtained by imposing each model’s deformation history onto the
physical damper. The CUKF’s inability to capture key nonlinear
features–most notably the Backlash effect–becomes evident in
this figure, corroborating the limitations discussed in Section 3.
Table 5 summarizes the error metrics for both the Northern
Calif-03 and Loma Prieta records. In both cases, the data-driven
OCP-NN model achieves the lowest NRMSE and MAE and the
highest 𝑅2 and TRAC values, followed by the physics-based
OCP-NN model; the CUKF trails both.

To assess the influence of damper modeling on local structural
behavior, the moment-curvature relationships at the base of the
first-story column and the end of the first-floor beam adjacent to
the column face are examined. Figure 15 shows these responses
for the Northern Calif-03motion. TheOMUof the LuGre dry fric-
tion model via the CUKF underestimates the ductility demand of
the first-floor beamunder positivemoment,while the data-driven
and physics-based OCP-NN produce almost similar results. The

CUKF also shows deviation from the OCP-NN models in the
first-story column moment-curvature, particularly in the third
quadrant of the moment-curvature plot.

5 Application to General RTHS

The proposed framework can be extended to general RTHS
applications through the following procedure:

1. ProblemFormulation: For a given structural configuration,
the locations at which devices will be physically modeled and
those represented by OCP-NN models should be identified.
As a general guideline, the physical device should be assigned
to the location expected to experience the highest demand, as
suggested in prior studies [4, 14].

2. Training Data Generation: Conduct numerical simula-
tions of the complete system to obtain the deformation time
histories at the relevant locations. These deformation histo-
ries are then imposed as predefined inputs to the physical
device to acquire the corresponding training data.

3. OCP-NN Model Selection and Training: The selection
between a physics-based or a data-driven OCP-NN model
depends on the fidelity of the available constitutive model
and the objectives of the simulation, as described previously.
Upon selection, the chosenOCP-NNmodel should be trained
and validated to ensure satisfactory performance prior to
deployment. This process includes a systematic hyperparam-
eter tuning, where parameters such as the number of layers,
number of neurons per layer, learning rate, batch size, and
regularization are optimized.

4. Execution of RTHS: Finally, the RTHS is conducted using
the OCP-NN model. Following the simulation, the defor-
mation history associated with the OCP-NN model can be
imposed onto the physical device to obtain the correspond-
ing forces, thereby enabling an evaluation of the model’s
predictive accuracy during the RTHS.

6 Summary, Conclusions, and Future Work

This section provides a comprehensive overview of the research
conducted in this study, synthesizes the key findings, and outlines
potential directions for future work.

6.1 Summary

This paper presents NNmodels that are coupled in real-timewith
an experimental substructure to enable accurate numerical mod-
eling in RTHS when insufficient physical devices are available in
the laboratory. The proposed framework is validated using a two-
story RC-SMRF equipped with BRFDs at each story. A BRFD is
selected as the experimental substructure by virtue of its complex
force-deformation behavior that is difficult to model numerically.
The analytical substructure consists of the frame modeled using
explicit force-based fiber elements, reinforced concrete sections,
with 2nd order nonlinear geometric effects. In the RTHS configu-
ration, the first-story damper is physically tested in the laboratory,
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FIGURE 13 RTHS response of the prototype building for the Northern Calif-03 recorded at Ferndale City Hall: (a) Roof displacement and (b) 2nd
story damper deformation.

FIGURE 14 Force-deformation hysteresis of (a) data-driven OCP-NN model, (b) physics-based OCP-NN model, and (c) CUKF compared to the
measured force-deformation of the damper from the RTHS of the Northern Calif-03 recorded at Ferndale City Hall.

TABLE 5 Error metrics of the predicted damper force from the RTHS of the selected ground motion records.

Northern Calif-03 recorded at Ferndale City
Hall

Loma Prieta recorded at Emeryville Pacific
Park

Model NRMSE (%) MAE (kN) R2 TRAC NRMSE (%) MAE (kN) R2 TRAC

Data-driven OCP-NN 2.45 0.80 0.97 0.98 2.72 0.90 0.96 0.98
Physics-based OCP-NN 4.84 1.54 0.89 0.95 3.76 1.11 0.92 0.96
CUKF 5.54 2.02 0.86 0.93 5.17 1.71 0.90 0.95

while the second-story damper is modeled using the proposed
Online Cyber-Physical Neural Network (OCP-NN) framework.
Two OCP-NNmodels are developed: (i) a data-driven model that
uses the training data to learn the relation between the inputs and
outputs, and (ii) a physics-basedmodel that embeds a constitutive
routine within a custom differentiable physics layer, using the
training data to identify its parameters. The physics-based model
supports gradient backpropagation while enforcing physical con-
straints. The OCP-NNmodels are linked to the physical device in
real-time and receive data from the latter every 1/1024 s during
the RTHS to accurately represent its behavior at a different
location in the structure. The OCP-NN models are compared to
the conventional OMU technique for RTHS utilizing a CUKF.

A suite of ground motion records is obtained from the PEER
NGA-West2 database, and numerical simulations are conducted

by using a LuGre dry friction model in the RC-SMRF to obtain an
ensemble of damper deformation time histories, which are then
imposed on the physical device to obtain the respective force time
histories. These measured damper deformation and force time
histories at the two stories are then used to train the OCP-NN
models. TheOCP-NNmodels are based on an LSTM architecture,
where the network hyperparameters are optimized through a
grid search.

The models are trained and validated using a set of 14 and four
groundmotions, respectively. The validation also included assess-
ing the effect of delay in the measured response of the physical
device on the accuracy of the models. The RTHS are conducted
using two ground motion records to assess the OCP-NN models
in an actual RTHS framework. The approach presented herein
was utilized for a device which did not accumulate damage.
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FIGURE 15 Moment curvature behavior of the (a) base of first-story column and (b) end of first-floor beam adjacent to column face obtained from
the RTHS under the Northern Calif-03 ground motion recorded at the Ferndale City Hall.

Applying the method to devices that accumulate damage would
require testing a large set of initially undamaged experimental
substructures in order for the NN model to effectively learn the
evolution of damage in the device.

6.2 Conclusions

The findings of this study highlight the use of OCP-NN models
in conducting RTHS of structural systems when the number of
physical devices is limited and must be accurately numerically
modeled. The conclusions from the results of the study are the
following:

1. The data-driven OCP-NN model is able to more accurately
capture the device dynamics and outperform the physics-
based OCP-NN model in terms of the predicted output force
accuracy for the studied device. The inferior performance
OCP-NN is attributed to the use of an inadequate available
constitutive routine. On the contrary, the physics-based OCP-
NNmodel provides a better interpretability of the underlying
physics, such as explaining the Backlash by the variation of
the aggregate bristle stiffness 𝜎0.

2. Unlike an offline NNmodel, the data-driven OCP-NNmodel
is able to adapt to changes in the experimental substructure
characteristics in real-time due to its data link with the latter,
thereby enabling it to achieve a higher level of accuracy than
the offline NN model.

3. The CUKF employed for OMU is inferior to the OCP-NN
models due to its inability to model the time variation of
the constitutive routine model parameters. Although the
CUKF faces limitations when applied to systems exhibiting
strong nonlinearities, nevertheless, it remains a practical but
less accurate option for RTHS when collecting the required
amount of NN training data is impractical.

6.3 Future Work

The proposed approach has been successfully introduced and
validated. Future research may include applying the OCP-NN

models for different experimental substructures, constitutive
routines, and RTHS configurations, and further assessing the
advantages and limitations of the physics-based and data-driven
OCP-NN models. Additional studies on the OCP-NN models are
recommended, but not limited to:

1. Extending the approach to semi-actively and actively con-
trolled devices.

2. Investigating the generalizability of the trained OCP-NN
models for application in other structures.

3. Extending the OCP-NN approach to model responses at
multiple locations within a structural system.

4. Extending the OCP-NN approach to utilize data from more
than one experimental substructure.
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